Тахеометрическая съёмка представляет собой процесс комбинированных геодезических измерений, в процессе которого одновременно определяется плановое и высотное положение точек, что даёт возможность сразу после выполнения полевых работ получать топографический план местности. Сам термин «тахеометрия» в буквальном переводе означает «быстрое измерение».
Положение точек определяется относительно пунктов съёмочного обоснования: плановое положение определяется полярным способом, а высотное — с помощью тригонометрического нивелирования. Длины полярных расстояний и густота пикетных (реечных) точек (максимальное расстояние между ними) регламентируются в инструкции по выполнению топографо-геодезических работ.
При производстве тахеометрической съёмки используются тахеометры — профессиональные геодезические приборы, предназначенные для измерения горизонтальных и вертикальных углов, а также длин линий и превышений. Теодолит, имеющий вертикальный круг, устройство для измерения расстояний и буссоль для ориентирования лимба, относится к теодолитам-тахеометрам. Наиболее удобными для выполнения тахеометрической съёмки являются тахеометры с номограммным определением превышений и горизонтальных проложений линий. В настоящее время широкое распространение получили электронные тахеометры, объединяющие в одном корпусе теодолит, дальномер и счётное устройство и позволяющие выполнять угловые и линейные измерения и проводить совместную обработку результатов измерений.
Тахеометрическая съёмка производится с пунктов съёмочного обоснования, которые называются станциями. Наиболее часто в качестве съёмочного обоснования используют теодолитно-высотные ходы. Характерные точки ситуации и рельефа называют реечными точками или пикетами; их на местности не закрепляют. Для определения планового положения точек съёмочной сети измеряются горизонтальные углы и длины сторон, высоты же точек определяются при помощи тригонометрического нивелирования. Углы наклона измеряются при двух положениях вертикального круга в прямом и обратном направлениях, расхождение в превышениях не допускается более 4 сантиметров на каждые 100 метров расстояния.
Для выполнения съёмки электронный тахеометр устанавливается на станции и настраивается в соответствии с необходимыми условиями измерений. На пикетах ставятся вешки с отражателями, при наведении на которые электронный тахеометр автоматически определяет расстояние, а также горизонтальные и вертикальные углы. Если тахеометр имеет безотражательный режим, то появляется возможность проводить измерения на реечные точки, на которых невозможно установить вешку с отражателем. Счётное устройство тахеометра во время измерений автоматически вычисляет горизонтальное проложение, приращения координат и превышения. Все данные, полученные в ходе измерений, сохраняются в памяти прибора, а в дальнейшем они могут быть переданы с помощью интерфейсного кабеля на компьютер, где с использованием специального программного обеспечения выполняется окончательная обработка результатов измерений для построения топографического плана, цифровой модели местности или обмерного чертежа. Совместное использование электронного тахеометра с компьютером позволяет полностью автоматизировать процесс построения модели местности. В настоящее время наиболее широкое распространение получили электронные тахеометры производства зарубежных компаний Trimble, Nikon, Leica, Sokkia, Topcon и некоторые другие. Все они имеют встроенное программное обеспечение для производства практически всего спектра геодезических работ: развитие геодезических сетей, съёмка и вынос в натуру, задачи координатной геометрии, таких как решение прямой и обратной геодезической задачи, расчёт площадей, вычисление засечек и прочее. Угловая точность у данных электронных тахеометров может быть от 1" до 5" в зависимости от их класса точности.
К особому типу электронных тахеометров относятся появившиеся относительно недавно инновационные роботизированные тахеометры, оснащённые сервоприводом. Данные приборы благодаря сервоприводу могут самостоятельно наводиться на активный отражатель на вешке и производить измерения. Кроме этого, роботизированные тахеометры оснащаются специальной системой дистанционного управления по радиосвязи. Используя роботизированный тахеометр, съёмку может производить всего один человек, находящийся с активным отражателем непосредственно на измеряемой точке, тогда как прибор следит за отражателем и производит измерения. Подобная схема съёмки увеличивает производительность проведения топографо-геодезических работ примерно на 80%. Роботизированные тахеометры также могут быть использованы для слежения за деформациями объектов, съёмки движущихся объектов и иных сложных задач.
Технологии производства работ не стоят на месте и неуклонно развиваются. То, что ещё несколько лет назад казалось сказкой, сейчас активно используется при выполнении проектов в различных отраслях производства и сферах деятельности. Наша компания идёт в ногу со временем и уделяет большое внимание как применяемым технологиям, так и парку оборудования.
Компания ОАО «Союзгипрозем» при выполнении работ использует следующие технологии:
— Наземное лазерное сканирование;
— Мобильное лазерное сканирование;
— Воздушное лазерное сканирование;
— Аэрофотосъёмка;
— Тахеометрическая съёмка;
— GNSS измерения.
Компания «Союзгипрозем» выполнила лазерное сканирование и аэрофотосъёмку участка трассы М-4 в Краснодарском крае. Инженерно-геодезические изыскания были проведены в рамках проекта по обустройству, реконструкции, ремонту и эксплуатации на платной основе федеральной автодороги.
Произведено 3D лазерное сканирование известнякового карьера с целью подготовки исходных данных для последующего мониторинга объёмов добычи полезных ископаемых. На основании полученного облака точек была построена цифровая модель карьера для подсчёта объёмов добычи полезных ископаемых.
Специалисты ОАО «Союзгипрозем» произвели тестирование нового программного обеспечения CREDO 3D СКАН 1.0 по просьбе разработчика — компании «Кредо-Диалог», которая многие годы занимается созданием специализированных программных продуктов для решения инженерных задач.
Специалисты компании «Союзгипрозем» выполнили проект по архитектурным обмерам павильона «Кролиководство» на ВДНХ в Москве и последующей подготовке комплекта его обмерных чертежей для реставрации. Обмерные работы были проведены по технологии лазерного сканирования.
Специалисты ОАО «Союзгипрозем» произвели комплекс земельно-кадастровых работ под строительство автомобильной дороги Центральной кольцевой автомобильной дороги Московской области (ЦКАД) и непосредственно для постройки 1-й очереди этой скоростной трассы протяжённостью 50 километров.
Специалисты компании «Союзгипрозем» выполнили проект по обмерным работам стадиона «Самара Арена» методом лазерного сканирования для создания базовой 3D модели основных несущих элементов кровли стадиона с последующим мониторингом геометрических параметров объекта.
Инновации. Качество. Опыт.
АО «Союзгипрозем».
Официальный веб-сайт.
© 2006 — 2023. Права защищены.
119021, Российская Федерация,
г. Москва, Токмаков пер., д. 9
телефон: +7 (495) 225-20-85
эл. почта: post@souzgiprozem.ru